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When a pendant drop of weakly conducting fluid is raised to a high electric potential, 
it frequently adopts the shape of a Taylor cone from whose apex a thin, charged 
jet is emitted. Such a jet can display surprising longevity, but eventually breaks up 
into fine droplets, a fact utilized in electro-spraying devices. This paper examines 
the linear stability of an incompressible cylindrical jet carrying surface charge 4 in a 
tangential electric field E ,  for various values of the permittivity ratio 2 and the finite 
rate of charge relaxation, z. The viscosity is assumed to be large. It is shown that 
all axisymmetric temporal modes can be stabilized for suitable values of (9, E ) ,  but 
sinuous modes with logarithmically large wavelengths are unstable. If these very long 
waves are excluded, the jet can sometimes be completely stabilized. It is also shown 
that an uncharged jet with low permittivity is unstable to sinuous waves for large E ,  
contrary to previous belief. 

1. Introduction 
The influence of electric fields on the stability behaviour of free liquid jets has 

attracted interest for over a century. The heyday of electrohydrodynamics (EHD) 
was the late 1960s (Melcher & Taylor 1969), but recently electro-spraying technology 
has led to a resurgence of interest in EHD phenomena. When a liquid drop hanging 
from an orifice feels a strong electric field, its surface deforms in response to electrical 
stresses, frequently forming a Taylor cone (Taylor 1964). If the field is increased 
further, the cone loses stability, emitting a thin jet from its apex. Under some 
conditions this configuration, known as the EHD cone-jet, is essentially steady, 
although the emitted jet eventually breaks up into small drops. The diameter of these 
drops is much smaller than that of the orifice. A number of industrial processes make 
use of this phenomenon to generate a uniform fine spray, charged to within a high 
proportion of the Rayleigh limit (Rayleigh 1882). 

Experimental studies have identified a variety of parameter ranges in which cone- 
jets exist (see for example Zeleny 1915; Taylor 1969; Hayati, Bailey & Tadros 1987a,b; 
Cloupeau & Prunet-Foch 1989; Fernindez de la Mora et al. 1990). A number of 
physical processes co-exist, each with its own timescale. In particular, the timescale for 
viscous diffusion across the jet can be large or small compared with, say, the timescale 
for capillary action. The Reynolds number appropriate to a surface perturbation can 
thus be high or low. 

In this paper we concentrate on the question of the stability at low Reynolds 
number of the emitted jet. Previous studies have considered either a charged jet in 
the absence of a tangential electric field (Bassett 1894; Taylor 1969; Saville 1971b), 
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or an uncharged jet in a uniform tangential field (Saville 1970, 1971~).  Some of these 
works have assumed a perfect conductor, so that charge relaxation can be considered 
instantaneous. But Saville (19714 demonstrated that the charge relaxation instabilities 
of Melcher & Schwarz (1968) can occur for imperfect conductors. 

When the jet is produced by means of the cone-jet process, both surface charge 
and tangential field are present, although not in amounts which are easy to pre- 
determine. Furthermore, the effects of charge relaxation cannot be ignored, as the 
width of the jet is determined partly by the charge relaxation rate (Mestel 19940; other 
papers in this special journal issue are also relevant). In a previous work, the author 
investigated the effects of charge, tangential field and a finite charge relaxation rate for 
a high Reynolds number flow (Mestel 1994b). There, for mathematical convenience, 
axisymmetric perturbations were considered mainly, so that the perturbed flow was 
irrotational apart from a thin surface layer. In this paper, the opposite inertialess 
limit will be considered, for all wavenumbers. The calculation is here much more 
involved, and without the computer algebra package Mathernatica the general case 
would have been difficult to contemplate. 

The observations suggest that the jet may do one of three things: it may remain 
stable for a surprising distance, it may break up to long axisymmetric disturbances as 
it does when subject purely to capillary forces, or it may perform a sinuous whipping 
motion, an instability quintessentially electrohydrodynamic (Taylor 1969 ; Magarvey 
& Outhouse 1962; Huebner 1969). Our aim in this paper is to determine under 
which circumstances each form of behaviour is to be expected when the Reynolds 
number is low. We formulate the stability problem for linear, temporal modes in 
$2 subject to the electrical stresses discussed in $3. The axisymmetric and sinuous 
modes are discussed in detail in 44 and $5 respectively. It is found that a suitable 
combination of q and E can stabilize the axisymmetric modes against both capil- 
lary and charge relaxation instabilities. The sinuous modes, however, are strange 
in that the extremely long waves are violently unstable. This feature was found 
by Saville (19714 when merely surface charge is present for a perfect conductor. 
It can be considered as an artefact of the geometry, in that the two-dimensional 
Stokes equations do not behave well. They respond with a massive amplification 
of the weak repulsive force caused by the infinitesimal sinuous displacement of the 
surface charge. Inclusion of a small inertial term, however, controls the singularity. 
Alternatively, as the instability requires the logarithm of the vertical wavelength to 
be large, we can arbitrarily ignore sufficiently long disturbances, relying on some 
neglected physics to control these maverick modes. Once this is done, parame- 
ter ranges can be found which stabilize the sinuous waves. Overlapping stability 
regions for both sinuous and axisymmetric modes then exist in some parameter 
ranges. 

Another curious result is that there is a critical permittivity ratio I = 3, below 
which sinuous relaxation stabilities can exist at low Reynolds number, a feature which 
has not previously been noticed. Drozin (1955) reported difficulty in producing jets at 
low permittivity, although Jones & Thong (1971) found that these do  exist for small 
enough relaxation times. However, a high permittivity exerts a stabilizing influence 
for all modes and Reynolds numbers and this theoretical result may not be related 
to those experiments. 

The manner in which the inclusion of small inertial terms can limit both the 
wavelength and the growth rate of the most unstable sinuous mode is examined in 
46. In §7, modes with higher azimuthal wavenumber are briefly considered and we 
conclude in $8. 
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FIGURE 1. The perturbation of the jet. 

2. Formulation of the problem 
We consider a liquid cylinder of radius a, density po, viscosity ,UO, electrical permit- 

tivity E and conductivity cr, surrounded by an insulating gas of vacuum permittivity c0. 
A uniform axial electric field (0, 0,Eo) with respect to cylindrical coordinates ( r ,  0,z) 
exists inside and outside the cylinder, as in figure 1. The interface carries a uniform 
electric charge density qo, with a surface tension yo. We non-dimensionalize length 
with respect to a, time with respect to the capillary scale apo/yo and mass with respect 
to a2p i / yo .  The relevant parameters are 

The low Reynolds number assumption is that p 6 I. The parameter y is retained 
to identify where appropriate the action of surface tension. Also important are two 
electrical parameters, the permittivity ratio 2 and charge relaxation time z : 

This non-dimensionalization is more appropriate for the low Reynolds number flows 
to be considered here than that used by Mestel (19944 for the high Reynolds number 
problem. Here we shall usually assume that p = 0. 

Before we forget about inertia, however, we should recognize that in reality the 
charge on the jet surface will be pulled by the tangential field and thus that the jet 
may accelerate. If the inlet velocity is fixed, then the resultant thinning of the jet 
could invalidate the model. If we permit the entire jet to accelerate, then its vertical 
velocity is 

where g denotes a suitably non-dimensional gravity. We could restrict ourselves to a 
scenario in which the imposed tangential stress exactly balanced gravity, so that the 
net acceleration is zero. More usefully, we can regard this as a physical limitation on 
the vertical lengthscales permitted by the theory, as discussed in Mestel (1994b). 
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consider perturbations so that the surface S is defined by 
We shall work in a (possibly accelerating) frame with the jet surface at rest and 

> (2.41 

with 6 <. 1 and s being the (complex) growth rate of the disturbance. The wavenumbers 
k and m are real and positive but otherwise arbitrary save that m must be integral. 
The unit normal to the surface, n^, is then 

(2.5) 

ikztimff +,t r = ( 1 + [ )  where [ = 6 e  

ii = (1, -imc, -ikc). 

The perturbed pressure p and velocity u take the form 

p = p0 + y + p^ ,  u = (0, 0, i q E ( r 2  - 1)) + 2 , 

where po is the non-dimensionalised constant atmospheric pressure, while the pertur- 
bations p̂  = [ p ( r )  and u^ = (u,(T), ue(r), u,(r))[ obey the Stokes equations 

V - i l ' = O  and Vp^=V2& (2.6) 

(2.7) 

In component form these are 

(rur)' + imue + ikru, = 0 

and 

(2.8) 1 r2u: + ru: - (m2 -t- l )ur  - k2r2ur + 2 i m u ~  = r2pr ,  
r2u$ + rui - (m2 + f )ug - k2r2u8 - %mu, = imrp, 

rzu: + ru: - uz - k2r2uz = ikr2p. 

The general solution regular at r = 0 can be written 

(2.9) i P = PI,,, 
U, = P [krZ, - ( m  + 2)Im+1] + BIm-1 + CI,+i, 

= iP(m 4- 2)lm+l/(2k) + iBZ,-1 - iCZm+,, 
u, = i iPrIm + i(B + C)Z,,,, 

where I ,  is a modified Bessel function of argument kr. The constants P ,  B and C are 
determined by matching the surface stresses, which we write in the form 

im 
r 

2 4  - p = T,, u: + iku, = T,, u; + -u, = Te. (2.10) 

The growth rate then follows from the kinematic surface condition 

s = u,. (2.11) 

When the imposed surface stresses (T,,, To, T,) are independent of u and s, the above 
procedure gives a unique growth rate in a straightforward manner. For example, in 
the Plateau problem (1873), where surface tension alone acts, we have 

(2.12) T o = T z = O ,  T , , = ~ ( l - - m  2 2  --/I). 

The growth rate for m = 0 turns out to be 

(2.13) 

All wavenumbers in the range 0 < k < 1 are unstable for this inertialess calculation, 
with the highest growth rate occurring as k --f 0, when ro - i k  and s 4 i y .  These 
results were given by Rayleigh (1892), who comments that Plateau (1873) was more 
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concerned with viscous than inertial effects, as are we here. The inclusion in the 
calculation of a weakly viscous surrounding fluid limits the size of the most unstable 
wavelength (Tomotika 1935), as indeed does a small amount of inertia (see 96). 

The sinuous (rn = 1) mode is also of interest, for which 

12(k' (2.14) with r1 = ~ 

Ii(k)' 
All k values are stable in this case, the long waves especially so, since as k 3 0 we 
have r1 - i k  and 

-2k + 6rl - 2k2rl + 7krt - k3r: + 2k2r: 
2k(k2 - 4krl + 3rt - k2r: + 2kr:) 

s = y  

(2.15) 

We note the violence of the response to such modes and in particular the sensitivity 
to the sign of T,. The importance of this effect will become clear in $6. Similar 
expressions can be found for modes with higher values of m, which are always stable. 
For large values of k all modes are stable with s 'v -ky/2 for all m 

When electrical forces act the surface stresses are more complicated, especially since 
for finite electrical conductivity they depend explicitly on both s and u,. We discuss 
these in the next section. 

k. 

3. The surface stresses 
The electric field perturbation was calculated in detail in Mestel (1994b) and here 

we summarize the results. Using the suffices -t and - to denote outside and inside 
the jet respectively, the perturbed electric potentials #* take the form 

The coefficients C and D of the modified Bessel functions I ,  and K ,  can be found 
from the boundary conditions on Y = 1 i- [. These are the continuity of potential, 

#+ = 4-, (3.2) 

and the conservation of charge 

where q1 is the surface charge perturhation and R is the rate of dilation of surface 
elements 

2. [ ( G -  V)u] -= [ R  = [ [-ikqE + u:(1)] . (3.4) 
It is the relation (3.3) which complicates the problem greatly. In  balancing the flow of 
charge on a surface element C, allowance must be made for electrical conduction, the 
growth of the perturbation and the advection of charge due to motion of the surface, 
as indicated in figure 1. Unless z = 0, the surface stresses thus depend explicitly both 
on the growth rate s and on the velocity perturbation u,. We write the stresses in the 
form 

where from Mestel (1994b) 
(Tn, 7-0, Tz)  = (T?, T:, Tp) + R (T:, TF, TF), (3.5) 

Z 
(T:, T:, T f )  = -( - 

W 
iqE(2 - 

m 
Rq2, -iq2-, qE(11"- k R )  - iq'), 
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with 

W = + ~ ~ ( 2 1 -  R) R = KA(k) /Km(k)  , P = Z;(k)/Z,(k) (3.7) 

and 

1 1 
W 

T," = y( 1 - k2 - m2) + - [kE'(A - l)[sz( 1 - A) - A] - Aq2r"( 1 + k R ) (  1 + sz) 

+ E2q2k(l - A)z + iqE[-3kW + kl?A - ( A  - 1)sz + kRq'z]]  , 

T o  - [ - (1 + kl?)q2sz + ikqE[A + q2z + (A - l)sz]] , ' - kW 
i 

W 
TP = - [kE'A(R - i) - q2sz( 1 + kl?) + E2q2zk(l? - 11) 

- iqE [-A@ + k + ki l? )  - kq2z + ksz( 1 - A) - W ] ]  . 

The relations (3.4-3.8) can be substituted into (2.9) and (2.10) and the resulting system 
of equations solved to find the growth rate s, taking note that R depends on P ,  B 
and C. With # 0, we obtain a quadratic equation with complex coefficients for s, 
which we write for given rn as 

ams2 f bms + C, = 0, (3.9) 

with the coefficients having no common factors or denominators. We find that we can 
define real and imaginary parts such that a, = a, 3 0, b,, = b, + ibi and c, = c, + ici. 
Then the conditions for stability are 

b, 3 0 and c,b; + bib,ci - arc; 3 0. (3.10) 

The algebra required is exceedingly nasty, even with the help of Mathematica. The 
expressions for b, and c, cover several pages, and the program required some guiding 
to prevent storage overflow during the calculation. Fortunately the problem is linear 
and may be subdivided into algebraically tractable portions. Agreement was found 
with all previous works which can be obtained as limits of the general case. 

The coefficient a, is more manageable, being z (Af  - I?) multiplied by a real 
polynomial in k ,  m and r,, = I m + ( k ) / I m ( k ) .  It never vanishes except when z = 0 so 
that (3.9) has two roots, which is what one would expect on physical grounds. As 
z + 0, the important root is s E -cm/b,, the other one being 

(3.11) 

Thus for small values of z, charge relaxation is not necessarily destabilizing at low 
Reynolds number. This contrasts with the high Reynolds number behaviour, when 
all modes are unstable for z > 0 (Saville 1971a; Mestel 1994b). 

For any values of the physical parameters q, E ,  z, A, we can now evaluate the 
possible growth rates of the disturbance for any k and m. Further, we can calculate 
the wavenumber k corresponding to the growth rate with the greatest real part. When 
appropriate, we can find conditions on the parameters such that this value is zero, 
delimiting stable and unstable regions of parameter space. We begin by considering 
the axisymmetric disturbances, which are dominant in the absence of electric effects. 
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4. Axisymmetric modes 
When surface tension alone acts, we saw in $2 that axisymrnetric modes are unstable 

for 0 < k < 1, with the most unstable being the long waves, m = 0 and k + 0. This 
contrasts with the higher Reynolds number behaviour when the most unstable mode 
has k FS 0.7 (Rayleigh 1879). The behaviour of the axisymmetric long waves for the 
electric jet is thus of primary interest. 

The growth rate s is given by aos2 + bos + co = 0. As k --f 0 with none of 2, E and 
q zero, we find 

a0 - 32 , and co - E 2 ( 1  + q22) + O(k2 logk). (4.1) 

An O( 1) term accompanies the logarithm as usual, and throughout this paper (log k )  
is used to denote (Ink - 0.11593). This constant term might be modified if a different 
electrical boundary condition at infinity were deemed appropriate for a specific 
problem. Since a. > 0 and co > 0, the condition for stability is bo 2 0. The logarithm 
ensures that this is satisfied for small enough k for any q > 0, so that any amount 
of surface charge can stabilize the very long waves. If q is small, however, as k 
increases from zero the logarithm is soon essentially O(1) and (4.1) may still be a 
valid approximation for some small wavenumbers such that bo < 0, with resultant 
instability. Furthermore, if the theory is to apply in a practical situation, it is likely 
that large values of (log k )  with the attendant very large lengthscales will be of limited 
importance. In fact we will see that 0(1) values of q are necessary to stabilize all 
axisymmetric modes. 

When q = 0, we have the problem considered by Saville (1970, 1971~).  The long 
waves are unstable to charge relaxation overstabilities with 

bo - -iz(y + 4q2 logk) 

s = hy & (y2/144 - E ’ i / 3 ~ ) ’ ’ ~  (4.2) 

As 2 decreases or E increases the capillary instability becomes oscillatory with half 
the growth rate of that of the non-electric jet. This is illustrated in figure 3 of Saviile 
(1971~) (there is a typographical error in that figure, 0.25 should read 2.5). 

When 7 = 0, the oscillatory instabilities are suppressed. We have bo N -:iLk2 logk 
and 

to leading order. Any tangential field suffices for stability of long waves, as does a 
surface charge q2 > y. 

When E = 0, to leading order as k + 0 we have co - ik2  logk(y - q2) ( l  + q22). A 
weak instability occurs if y > q2 and an O( 1) one if y > -4q2 log k. 

Naively, it might be expected that if very large values of k are stable as well as 
very small values, then there is a reasonable chance of overall stability. We therefore 
consider also the limit k + ov. Surface tension has a strong damping effect on very 
short wavelengths, but if q and E are much greater than unity, an unstable band 
of modes might occur for large but not enormous values of k .  If we set z = 0 for 
simplicity and let k 3 00 we find 

s - fE2/(k’ logk) + :(Y - q2) (4.3) 

s - - i y k  + i [q2 - 4iqE - (2 - 1)E2]. (4.4) 

Stability for large values of k is thus guaranteed provided 

(i- 1 ) E 2  3 q2. (4.5) 

For z > 0 a more complicated relation holds, with instability occurring at a smaller 
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FIGURE 2. Short waves, k .> 1 with q,  E 9 y. Critical vaIue of $ / [ ( A  - l ) E 2 ]  as a function of z E 2  
for I = 1.1, 2, 4, 12, 78. Regions above these curves are unstable. 

value of z. In figure 2 the critical charge destabilizing the short waves when surface 
tension is negligible is plotted against z for 2 = 1.1, 2, 4, 12, 78. For physical reasons 
A 2 1; 1 N 2 for many organic solvents while 2 = 78 corresponds to water. It should 
however be borne in mind that except for very small jet diameters, the low Reynolds 
number assumption p 4 1 will not hold for aqueous jets. With 1 = 1 any q > 0 is 
unstable, while for 2%- 1 (4.5) is a reasonable approximation for any z. There is a 
minimum of q at a finite value of z. This tendency for small values of 1 to require 
smaII z for stability agrees with the observations of Jones & Thong (1971). 

We now consider the fuil problem for the axisyrnmetric modes. First, we fix z = 0.1 
and for different values of /I we calculate the neutral stability curves in the (9, E ) -  
plane, by finding when the maximum growth rate over all k is zero. The results for the 
four values 2 = 2, 4, 12, 78 are shown in figure 3.  Each neutral stability curve has a 
lower branch, below which the long waves (small k) are unstable. As described above, 
these are not the asymptotically small values of k, but rather some intermediate small 
value. Each curve also has a left-hand branch, above which some moderately large 
wavenumber is unstable, although not so large that surface tension dominates. These 
two branches meet at a sharp corner, at which two different values of k have the same 
real part of s and the most unstable wavenumber is discontinuous. One might expect 
the left-hand branches of these curves to asymptote to a gradient given by figure 2, 
but this need not occur if Re(s) is maximum at some finite k-value. 

As the permittivity of the jet 1 is increased, a smaller electric field has a stronger 
polarizing effect, and so smaller values of E are necessary for stability. Regions to 
the top-right of figure 3 are stable to all m = 0 modes. 

We now consider the effect of varying the conductivity of the jet, by fixing the 
permittivity /I = 2 and allowing z to take various values. The resulting stability 
regions are shown in figure 4. When z = 0, tangential field alone can stabilize all 
axisymmetric modes, but for z > 0 surface charge is required to prevent the over- 
relaxation instability of Melcher & Schwarz (1968) and Saville (19714. The neutral 
stability curves have two branches once more, the lower one indicating stabilization 
of the long waves, and the upper one shorter waves. As 2 increases, the lower branch 
surprisingly turns over, but always for given q there is a single critical value of E 
above which all axisymmetric modes are stable, so that an increase in tangential field 
is never destabilizing. 
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FIGURE 3. Axisymmetric modes for 7 = 0.1, A = 2, 4, 12, 78. Regions to the right are stable for all 
k .  Near A and B, large and small k respectively are unstable. 
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FIGURE 4. Axisymmetric modes for 1 = 2, log,, z = -a, -2, -1, -0.5, 0, 2. 

5. Sinuous modes (rn = 1) 
We have seen that at low Reynolds number, suitable values of both surface charge 

and tangential field can stabilize all axisymmetric modes. Nevertheless, experiments 
have shown that the sinuous modes can also be unstable for charged jets and Saville 
(1971b) has demonstrated this theoretically when E = 0 and z = 0. He found 
that once more the long waves k -+ 0 were the most unstable, and we begin by 
investigating this limit. The short waves, with k + co are described once more by 
figure 2. 
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Setting m = 1 and letting k -+ 0, the coefficients of the stability quadratic are 

(5.1) i al - 3 7 1  +A)~, 
bl - 4iqEz( 1 + 1) + kz [E2(A - 1)2 + y(1 + 2) + (1 + 1)q2 log k] + :k3A, 

c1 - 2iqE(21+ q2z)  + i k  [(22 + q2z)(q2 log k + y )  + 21E2(A - 3)]. 

There is also a term of order (kq2E2T) in cl, but for no parameter values is this 
important for small k .  Once more, (logk) denotes (Ink - 0.11593) where significant. 

One of the roots given by (5.1) is stable if qz # 0, 

but the other is 

The leading term is rapidly oscillating, but at next order we have the stability condition 

2 0. ,(A - 
( A +  1) 

q2 logk + y + E (5-4) 

As we saw in 92, this is satisfied if q = E = 0. However, with q # 0, the logarithm 
which guaranteed stability for the axisymmetric mode here ensures that sufficiently 
long waves are unstable. Furthermore, the instability has a massive growth rate 
Re[s] - l/k2. 

This strange effect was pointed out by Saville (1971b) for the case with E = z = 0. 
It survives the presence of a tangential electric field and the resultant motion of 
the base state of the jet. The main difference is the presence of the neutrally stable 
higher-order term, which may mitigate the effect when more physics is included in 
the problem, as in 96. 

At first glance, the instability of this mode is paradoxical. After all, m = 1 and k = 0 
corresponds to a lateral displacement of the entire jet, which from physical grounds 
is obviously neutrally stable. Yet the presence when k = 0 of the eigen-solution of 
(2.5) with s = 0, (ur,  ug, u,) = A(1, i, 0) can be regarded as being responsible for the 
exceptional behaviour of small k for m = 1. Because of the cancellation at leading 
order, it is the higher-order terms which must deal with the stress perturbations, 
which therefore requires a high value of A in the leading-order flow. 

Formally, we have found that for any q > 0 the jet is highly unstable, and the most 
unstable modes are the sinuous long waves. However these may require the logarithm 
of the vertical lengthscale to be large. We know that there are physical limitations 
on the vertical lengthscales admissable by the theory, whether because of the neglect 
of inertia, the finite length of the experimental apparatus, the loss of validity due to 
acceleration and thinning of the jet or non-uniformities in the imposed electric field. 
The existence or otherwise of smaller wavelength instabilities is likely to be of greater 
relevance in practice than the logarithmically asymptotic instability of (5.3). We shall 
therefore impose an arbitrary limit on the size of k, requiring 

(5.5) 

We can then investigate the stability of modes with k 2 kmin. First we consider what 
happens if qz  = 0. 

k > kmin = e-4 e 0.0183. 
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1 10 
A 

FIGURE 5. Uncharged jet for ‘t + 0 and various E, A. Below the lower curve m = 0 modes are 
unstable; above the higher curve, m = 1 modes are unstable for 1 < 3. 

If z = 0 and subsequently k -+ 0, there is only one root, 

16iqE 4 s=---- log k + y + E2(1  - 3 ) ] .  
3k3 3k2 [‘ 

This is similar to (5.3), although the tangential field term is different. The two limits 
z -+ 0 and k -+ 0 are not interchangeable. 

When q = 0, the destabilizing logarithm vanishes, and the large root given by (5.3) 
is stable. However, the other root is no longer given by (5.2), but rather 

s=-(;) 
y + E2(I  - 3)  

E2(1- 1)2 + y(I  + 1)‘ (5.7) 

Thus we find that the long waves are stable unless the permittivity ratio 1 < 3 and 

y < E2(3 - A). (5.8) 

There is no obvious physical reason why the charge relaxation instability should 
manifest itself only at low permittivities for the sinuous modes. Saville ( 1 9 7 1 ~ )  
considers the q = 0 case but incorrectly states that “with viscous effects dominant 
. . . only axisymmetric motions can be unstable,” presumably influenced by his extensive 
study of the case I = 78, appropriate to water. In figure 5 we plot with logarithmic 
axes the stability region of an uncharged jet for z -+ 0. The lower curve represents 
the value of E for given I necessary to stabilize all axisymmetric modes. The upper 
curve gives the maximum value of E below which all sinuous modes are stable. It 
exists only for 1 < 3, as it happens that the long waves appropriate to (5.8) are the 
most unstable. 

We now return to the general case with the restriction (5.5) applied to k. In figure 
6 we plot the neutral stability curves for z = 0.1 and the same values of 1 as in 
figure 3 , 1 =  2, 4, 12, 78. The value q = 0.5 corresponds to where q2 log(kmi,) + y = 0, 
so that all the curves start close to this value when E = 0. At higher values of I ,  
the tangential field in (5.3) becomes significant more quickly as shown in the graphs. 
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Sinuous modes for 7 = 0.1, I = 2, 4, 12, 78, with k eP4 restriction. 
are stable. For i > 3 increasing E is stabilizing but for I = 2 there is 

Regions including 
a maximum stable 

Only one of the illustrated I-values is less than 3, and for this value there is another 
branch to be followed. When E 2~ 1 and q = 0 for I = 2 the over-relaxation instability 
appears, requiring surface charge to control it. These two branches for A = 2 intersect, 
to the right of which unstable k-values exist. 

In figure 7, we fix I = 2 and vary the charge relaxation time z. For z = 0 the stable 
region is approximately E 2  + 4q2 < 1, for the chosen value of k,,,. For z > 0, there 
are two neutral branches for each z value. The position of the upper branch is almost 
independent of T, as it is determined essentially by k,,,. The lower branch weakens as 
z increases, giving a wider range of stable (4, E )  values. 

Figures 3, 4, 6 and 7 may be combined to find parameter values for which the jet 
is completely stable, provided k 3 kmi,,. Polar liquids (high 2 )  have larger stability 
regions at low Reynolds number. For values of A < 3 and intermediate values of z 
(such as z = 0.1, I = 2) the jet is always unstable to one mode or another. 

In the next section we examine the manner in which a small amount of inertia can 
limit the size of the wavelength and growth rate of the most unstable sinuous mode. 

6. The limiting effect of inertia 
As k + 0 with m = 1 we have seen that the Stokes equations behave strangely, giv- 

ing rise to large velocities and growth rates in response to a small normal stress. This 
behaviour is connected to the neutral stability of the infinitesimal lateral displace- 
ment corresponding to k = 0, m = 1. In a real problem, the singularity as k -+ 0 is 
limited either by physical constraints invalidating the model for large enough vertical 
wavelengths, or by the presence of an external viscous fluid or by neglected inertial 
terms becoming important for any non-zero Reynolds number. To illustrate how 
this occurs we begin by considering Saville's (1971b) problem of a perfect conductor 
carrying surface charge only, so that E = 0 and z = 0. The unperturbed jet velocity 
is then zero, and the only non-zero surface stress perturbation is T,. 
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FIGURE 7. Sinuous modes for I = 2,  log,, 7 = -03, -2, -1.5, -1, -0.5, 0, 2. with k 3 ec4. Regions 

including the origin are stable. 

Including the inertial term psu in (1.6) and taking the limit k -+ 0, we obtain 

ps2 + i k4s  = -q2k2 log k - yk2 with p 4 1. (6.1) 

This relation agrees with an appropriate limit of equation (9) of Saville (1971b). It 
assumes that ( k 2  + ps) may be treated as small. Modes with sufficiently small values 
of k such that -1ogk > y /q2  are unstable. As k decreases to zero, the growth rate s 
given by (6.1) increases to a maximum until the inertial term becomes important. It 
then decreases to zero, remaining positive all the while. Neglecting surface tension to 
leading order, the most unstable wavenumber as p 4 0 is given by 

for which the growth rate is 

where L is the value of (- log k )  given by (6.2). 

rate for k --f 0, m = 1 is 
We now consider the effect of the other stress components. When p = 0 the growth 

4 
3k4 

s = -(Tn - iTo + ikT,) (6.4) 

illustrating the violent reaction to a non-zero sinuous stress component. When neither 
E nor q is zero, we saw in (5.3) that T, gives rise to a rapid oscillation as k --f 0 with 
m = 1. When inertia is included, the equation corresponding to (6.1) when z = 0 is 

ps2 + i k 4 s  = -4ikqE - k2[q2 logk + y + E2(1 - 3)1. (6.5) 

Now the imaginary term originating from T, is the first to interact with the inertial 
term as k -+ 0. Asymptotically for small p we can negiect the other three terms on the 
right-hand side of (6.5) to find that the maximum of the growth rate, Re(s), occurs 
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when 
a 

-Re[s] = 0 for k7 = 0.253pqE 
dk 

and takes the value 

Re(s) = 1.1167 ( y) (6.7) 

Both the maximum growth rate and corresponding wavenumber are larger as p 4 0 
than those given by (6.2) and (6.3), although for moderate values of p the difference 
is not so great. With p = 0.01 and 4 = 1, for example, the value of k given by (6.2) 
is only k N 0.45, for which L < 1 even! In (6.3) we then have s N 3.04. If in addition 
we take E = 1, then (6.6) and (6.7) give instead k -” 0.43 and Re[s] -N 8. In practice 
with even a small amount of inertia the most unstable wavelength will not be so very 
large. 

A similar calculation can be performed for axisymmetric modes, so that if E = 0 = z 
we obtain 

If y > q2, the most unstable mode has k2 = O(p). For k2 4 p, or for the sinuous case 
k much smaller than given by (6.2) or (6.6), the analysis of this section would require 
modification, as the limits k 4 0 and p --+ 0 are not interchangeable. 

It is clear that while finite inertia controls the singularity, a sinuous instability 
can be expected if there exists a sufficient vertical length of jet for it to be realized. 
Presumably the inclusion of an external viscous fluid along the lines of Tomatika 
(1935) would also lead to finite values of the growth rate and maximally unstable 
wavelength. 

ps2 + 3k2s + ik2(q2 - y) = O(k4). (6.8) 

7. Other limits 
We conclude with a brief survey of other limits of the full expressions. First of all, 

we consider the long waves for m 2 2, when we find 

a,,, - 4(1 + l)(m + l)z, 
b, - 4[(m + I)A + rnq2z] + 2rnz(1+ l)(y(m 
cm - m(y(m + 1) - q2)(2A + q2T) .  

The tangential field is not important as k -+ 0 for m > 
the surface charge is not too large, 

q2 < (m + 1)y. 

. These modes are stable if 

(7.2) 

This is the same condition as found by Saville (1971b) even though here z # 0 and 
E # 0. The constraint (7.2) is less severe than that posed by the sinuous modes unless 
a large value of kmin is taken. No cases were found when the most unstable mode had 
m > 1. 

Taking the limit 1 4 co is not possible physically, but it illustrates the stabilizing 
tendencies of the tangential field for highly polar liquids. Both roots of the quadratic 
(3.9) are stable for all m in this limit, one satisfying Re[s] -+ -l /z and the other 
proportional to A. 

The very poor conductor limit z -+ co does not result in much simplification of the 
problem. Surface charge is still redistributed in response to the perturbation but by 
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advection rather than conduction. For the long sinuous waves this process is very 
fast. In the absence of surface charge, the sinuous instability for 1 < 3 given by (5.7) 
remains as z -+ co, but becomes very slow. 

8. Concluding remarks 
In this paper we have shown that interactions among surface charge, tangential 

field and charge relaxation can stabilize a low Reynolds number jet, provided some 
limitation on the axial lengthscale can be imposed. Loosely speaking, the surface 
charge stabilizes axisymmetric long waves, but destabilizes O( 1)  waves. The simulta- 
neous action of a large enough electric field stabilizes all axisymmetric modes. Some 
surface charge is necessary to suppress the charge relaxation instabilities associated 
with non-zero E and z. 

The presence of surface charge does, however, excite sinuous instabilities. These 
are particularly acute in the limit of zero Reynolds number, when the growth rates 
of long waves are unbounded. A small amount of inertia limits the singularity, 
but nevertheless a band of sinuous instabilities can be expected for a moderate 
surface charge. If for some unspecified reason the logarithmically long waves can be 
neglected, however, a small amount of surface charge with a larger tangential field 
can stabilize the jet against all disturbances, especially for high permittivities. For 
permittivities 1 < 3, a sinuous charge relaxation instability can develop, and the jet 
is always unstable for some values of (A,r) ,  irrespective of the values of q and E. 
As the surface charge q increases, the most unstable mode will change from being 
axisymmetric to sinuous. 

At high Reynolds number, when there is a specific downstream direction in which 
disturbances evolve, there are arguments for considering spatial modes, but at low 
Reynolds number, a temporal mode analysis should suffice. Yet the elliptic nature 
of our problem, coupled with the system’s preference for long wavelengths raises the 
question of the influence of boundary conditions at the top and bottom of the jet. As 
the jet is free and tends in practice to break up into drops before coming into contact 
with an obstacle, however, it seems unlikely that the precise downstream boundary 
condition will be critical. 

The source of the weak electric repulsion for m = 1 is easily visualized, even though 
the amplification by the Stokes equations is counter-intuitive. The redistribution of 
charge caused by a lateral displacement of the jet at some value of z is repelled 
by a similar displacement half a wavelength down the jet in the opposite direction. 
Indeed, only for long-wave-length axisymmetric modes does the surface charge resist 
the deformation. 

In a real problem, some thought should be given to appropriate conditions at large 
r, to allow in particular for a return current. A distant boundary would alter the 
constant term associated with the logarithm as k + 0 and alter the stability regions 
slightly. 
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